How to evaluate the optical performance of spectacle lens with micro lens array Dr. Hua Qi^{*}, Shohei Matsuoka **R&D** Department, HOYA Vision Care, Tokyo, Japan

Dr. Hua Qi is an employee of HOYA Corporation

Disclosure of conflicts of interest:

Optical system wearing a spectacle lens with micro lens array

Wearing a spectacle lens with microlens array,

- **Possible to see things clearly**

All parts of retina have chance to receive myopic defocus stimuli

Why does this spectacle have some unwanted optical effect?

Point Spread Function (PSF) changes all over the lens

Optical property changes with position on lens

What happens? 1: Light intensity changes with position

Local Light Intensity (LLI) is quantified as the ratio of to the average value: L/A. The variation amplitude is : (Max-Min)/A

What happens? 2: Target shift changes with position

7

At each position, LTS (Local Target Shift) is quantified as : 100 * tan(shift angle)

What happens? **3: MTF changes with position**

At each position, Modulation Transfer Function (MTF) is derived as following:

 $OTF(F,\theta) = \frac{\iint_{\sqrt{x^2 + y^2} \le D/2} H(x,y) H^*(x - p\cos\theta, y - p\sin\theta) dxdy}{\iint_{\sqrt{x^2 + y^2} \le D/2} H(x,y) H^*(x,y) dxdy}$ $H(x,y) = \begin{cases} exp\left(-i\frac{2\pi}{\lambda}W(x,y)\right) &, when \sqrt{x^2 + y^2} \le D/2 \\ 0 &, otherwise \end{cases}$ $W(x,y) = \begin{cases} \frac{1}{2}P\left(r - \frac{d}{2}\right)^2 &, when r < \frac{d}{2} \\ 0 &, otherwise \end{cases}$

 $MTF(F,\theta) = |OTF(F,\theta)|$

At each position, MTF of a spatial frequency F changes with azimuth angle.

MTF of a spatial frequency F is quantified with two values:

- 1. Local mean MTF (MMTF) and
- 2. Local maximum difference of MTF (DMTF).

Summary of optical performance indices

- calculated to evaluate its optical property:
 - **1. Local light intensity (LLI)**
 - 2. Local target shift (LTS)
 - For every spatial frequency F
 - 3. Local mean MTF(MMTF) among all azimuth angles
 - 4. Local maximum difference of MTF(DMTF) among all azimuth angles

At each position on lens, the following indices are defined and

Honeycomb design

Interval : 1.5mm

- > Ring interval : about 2.07mm
- > Number of microlenses of each ring are: 28, 41, ..., 132

Local light intensity (LLI) map Honeycomb design Multi-ring design

Pupil: 4mm

Statistics within core area:
Maximum-minimum: 0.66%
Standard deviation: 0.11%

- > Statistics within core area:
- > Maximum-minimum: 1.13%
- > Standard deviation: 0.21%

Local target shift (LTS) map Multi-ring design

Honeycomb design

Pupil: 4mm

Statistics within core area: Maximum-minimum: 0.0026 Standard deviation: 0.0006

- Statistics within core area:
- > Maximum-minimum: 0.0055
- > Standard deviation: 0.0012

MMTF map at F=15CPD (visual acuity 0.5)Honeycomb designMulti-ring design

Pupil: 4mm

Statistics within core area:

- Average: 0.1477
- Standard deviation: 0.0033

Statistics within core area:

- Average: 0.3460
- Standard deviation: 0.0409

DMTF map at F=15CPD (visual acuity 0.5)Honeycomb designMulti-ring design

Pupil: 4mm

Statistics within core area:

- Average: 0.0228
- Standard deviation: 0.0083

- Statistics within core area:
- Average: 0.1348
- Standard deviation: 0.0132

MTFs of both designs

- > As the optical property varies across the spectacle lens with micro lens array, a map is necessary to describe the situation.
- > At each position on the lens, following new indices are defined and calculated to access its optical property:
 - **1.** Local light intensity(LLS),
 - **2.** Local target shift(LTS),
 - For every spatial frequency F,

 - **3.** Local mean MTF(MMTF) among all azimuth angles **4.** Local maximum difference of MTF(DMTF) among all azimuth angles
- > Two sample designs are evaluated and compared.

Thank you for your attention

