A REAL-WORLD STUDY COMPARING ATROPINE MONOTHERAPY TO THE SYNERGISTIC EFFECTS OF COMBINATION TREATMENT: DEFOCUS INCORPORATED MULTIPLE SEGMENTS SPECTACLE LENSES AND LOW DOSE ATROPINE

1 Oftalmocenter Santa Rosa, Cuiabá, MT, Brazil. 2 Centro Oftalmológico de Cáceres, MT, Brazil. 4 Centro Universitário da Várzea Grande, UNIVAG-MT- Várzea Grande, MT, Brazil.

celsocunha.consultor@hoya.com

Background

- The increasing of global prevalence of myopia has bee concern. In myopia management there are many types of used as monotherapy or combination treatment.
- The effectiveness of Defocus Incorporated Multiple Seg spectacle lenses (as an optical intervention) has been demo as a stand-alone treatment and when combined (pharmacological treatment) in diverse populations.^{1,2}
- There is no literature on the effectiveness of combination to DIMS spectacle lenses and low dose atropine (LDA) in the S population.

Purpose

The objective of this study was to evaluate whether the comb and DIMS spectacle lenses was beneficial in South-Ame undergoing myopia control treatment.

Retrospective data for 51 patients attending a private January – September 2020.

- Inclusion criteria:
- Age 8-13y \bullet
- Myopia with SER between -5.00 to -1.00 D
- Myopia progression \geq -0.50 D/year in the previous 12 months
- Attended for 6-month, one- and two- year follow-up visits
- Phase 1 Environmental control: Following initial myo participants were advised to spend 2 hours a day in outdoors
- Phase 2 Monotherapy: Participants whose axial length (AL ≥0.15mm in 6 months were prescribed LDA for the next 12-m
- Phase 3 Combination treatment: If at the 12-month visit, th by \geq 0.17 mm/year, combination treatment (LDA + DIMS sp was prescribed for the next 12 months period.
- To observe changes, only data from the right eye was accepte
- Treatment effectiveness was calculated based on the myop across time periods.
- This study was approved by ethics committee of Centro L Várzea Grande, Brazil, under number 2127639 (December, 8^{TI}

We thank PhD. Gilmar Jorge de Oliveira junior for all the statistical support.

Celso Marcelo Cunha^{1,2,3}, Jessica Teixeira Cunha², Giovanna Marchezine⁴, Matheus Bittencourt Novaes⁴, Vinicius Dal Ponte Carvalho⁴, José Eduardo Cesário Lindote⁴

en a cause for of interventions	
gments (DIMS) nonstrated both with atropine	
reatment using South American	
bination of LDA erican children	
alinia hatuvaan	
cinic between	
opia diagnosis, activities.	
L) increased by nonth period.	
ne AL increased pectacle lenses)	
ed.	
pia progression	
Jniversitário da ^h , 2023).	

esults			
lean age: 10.16 ± 1.63 years		Gender: Males 49%, Females 51%	
Table 1: General data			
Outcome	Phase	Mean ± SD	
Spherical Equivalent Refraction (D)	Baseline	-3.01 ± 1.22	
	Phase 1	-3.33 ± 1.22	
	Phase 2	-3.40 ± 1.21	
	Phase 3	-3.46 ± 1.23	
Axial Length (mm)	Baseline	24.60 ± 1.03	
	Phase 1	24.79 ± 1.03	
	Phase 2	24.99 ± 1.02	
	Phase 3	25.12 ± 1.03	
Keratometry (D)	Baseline	43.13 ± 1.19	
	Phase 1	43.12 ± 1.21	
	Phase 2	43.13 ± 1.24	
	Phase 3	43.17 ± 1.22	

Graph 1: Boxplot with the distribution in each phase of spherical equivalent refraction (A), axial length (B), variation axial length (C), and keratometry (D).

Discussion

- 0.01% ³.

- Attributed to participant selection

- Limitations:
 - Retrospective study
 - Small sample size
 - Short follow-up duration

Conclusions

- or environmental control in a Brazilian population.
- progression.

References

.Lam CSY, Tang WC, Tse DY, Lee RPK, Chun RKM, Hasegawa K, Qi H, Hatanaka T, To CH. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: A 2-year randomised clinical trial. Br J Ophthalmol. 2020;104:363–8. .Nucci P, Lembo A, Schiavetti I, Shah R, Edgar DF, Evans BJW. A comparison of myopia control in European children and adolescents with defocus incorporated multiple segments DIMS) spectacles, atropine, and combined DIMS/atropine. PlosOne. 2023;18(2):e0281816.

B.Ha A, Kim SJ, Shim SR, Kim YK, Jung JH. Efficacy and Safety of 8 Atropine Concentrations for Myopia Control in Children. A Network Meta-Analysis. Ophthalmology.2022;129(3):322-33. 1.Yam JC, Jiang Y, Tang SM, et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and

0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126:113-24. .Hieda O, Hiraoka T, Fujikado T, et al. Efficacy and safety of 0.01% atropine for prevention of childhood myopia in a 2-year randomized placebo-controlled study. Jpn J Ophthalmol. 2021:1e11.

5.Li FF, Zhang Y, Zhang X, Yip BHK, Tang SM, et al. Age Effect on Treatment Responses to 0.05%, 0.025%, and 0.01% Atropine: Low-Concentration Atropine for Myopia Progression Study. Ophthalmology. 2021;128(8):1180-7.

7.Joachimsen L, Farassat N, Bleul T, Böhringer D, Lagrèze WA, Reich M. Side effects of topical atropine 0.05% compared to 0.01% for myopia control in German school children: a pilot study. In Ophthalmol. 2021;41(6):2001-8

LDA is the most widely used pharmaceutical intervention in clinical settings

• Several studies that showed weak effectiveness in long-term follow-up, particularly when AL elongation was the outcome of interest.^{4,5}

• Moreover, 0.05% atropine has been suggested as the most effective LDA tested in the young Asian population.⁶ In the western population, there were reports of frequent side effects when using this low-concentration.⁷

• In the present study, AL elongation was 0.13 ± 0.05 mm/year with combination treatment, compared to 0.21 \pm 0.03 mm/year from LDA alone, confirming the synergistic effect between LDA and DIMS.

 Although 0.025% atropine was used in combination with DIMS spectacle lenses in the present study, the results were indifferent to combination of 0.01% atropine + DIMS spectacle lenses in a European population.²

European study: participants selected from progressive myopes

Present study: sub-group of participants selected from progressive myopes in whom monotherapy (0.025% atropine) was not effective.

Combination treatment (DIMS spectacle lenses and 0.025% atropine) resulted in the most significant reductions in myopia progression based on AL elongation when compared to the use of 0.025% atropine monotherapy

Further randomized, double-blind clinical trials with longer follow-up may elucidate the true impact of this combination therapy on myopia

